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Abstract

The security aspect of Distributed Hash Tables (DHT-
s), the principal model for structured P2P networks, has
received considerable attention from research community,
and the eclipse attack is one of the most severe threats tar-
geting DHTs. Most of currently effective defense mech-
anisms suffer from significant communication cost. In
this paper we present a novel approach to address eclipse
attacks—making such attacks computationally infeasible.
The backbone of our approach is a scheme for generating
node IDs, which requires a user to solve a computational
puzzle generated by her network parameters together with
time-related information, in order for him to obtain a valid
ID. Such procedure normally should be completed within a
couple seconds of CPU time, and an ID can be easily veri-
fied for its validity. However, carrying out an eclipse attack
on a specific key demands massive computing resources. We
have evaluated our method by analyzing the cost of an at-
tacker, using real-world data from BitTorrent, and the re-
sult is that it takes thousands of processors running day and
night to find sufficient number of IDs. We also have simu-
lated the computing cost of both benign users and attacker-
s, and the outcome also supports the above claim. Unlike
most existing defense mechanisms, for our method the in-
duced communication cost and churn is negligible, and no
centralized service is required.

1 Introduction

As the principal model for structured P2P networks,
DHTs provide certain attractive features such as no cen-
tralized server, fast searching, and low network overhead.
However, their performance is still not satisfying in many
aspects: load-balancing, the availability of data, and so on.
More severely, security attacks could even paralyze the en-
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tire DHTs. The most studied attacks are: (1) sybil attack—
attackers generate enormous amount of bogus nodes that
could paralyze the whole P2P network; (2) eclipse attack—
attackers try to corrupt the routing tables of honest nodes
by filling them with malicious nodes; (3) routing/storage
attack—malicious nodes do not follow the routing/storage
protocols correctly [24].

This paper concentrates on the eclipse attack. What
makes eclipse attacks, and also sybil attacks, so easy to
initiate is the loosely controlled, or even open membership
policy on overlay networks. Because of such policies, an
attacker can create malicious nodes (sybil attack) and iso-
late IDs from normal nodes (eclipse attack) effortlessly, and
then manipulate lookup requests by forwarding requests to
malicious nodes or returning bogus ones. Both attacks focus
on the DHT protocol itself rather than the concrete client
programs. Clearly sybil attacks can be used for inducing e-
clipse attacks, however, the presence of an effective defense
against sybil attacks is not sufficient for preventing eclipse
attacks. For example, in DHTs a small number of malicious
nodes with legitimate identities is sufficient for initiating an
Eclipse attack [19]. Current defenses against eclipse attacks
focus on two approaches:

Putting constraints on neighbor set selection: Hil-
drum and Kubiatowicz recommended that each node select-
s as its neighbors the nodes with minimal network delay
among all the nodes that satisfy the structural constraints
for a given neighbor set member [14]. However, a large
number of nodes might appear within a narrow band of de-
lay [12], and the effectiveness of such PNS-based (PNS s-
tands for proximity neighbor selection) defense diminishes
with increasing overlay size [19]. Singh et al. presented
another defense scheme in which nodes anonymously au-
dit each other’s connectivity and enforce a limit on their
in-degree [19]. Admittedly, when carrying out an eclipse at-
tack, an attacker node should try to achieve a high in-degree
so as to save computing resource, however, when the attack-
er’s only purpose is to isolate a specific ID, high in-degree
becomes unnecessary and medium amount of IP addresses



plus modest computing resources are just enough. More-
over, such defense scheme induces additional communica-
tion costs, which might lower the speed of legal requests
when no attack is occurring.

Circumscribing ID selection: Eclipse attacks are al-
most inevitable as long as a node can arbitrarily choose an
ID, thus many defense mechanisms focus on circumscrib-
ing ID generation [3, 5, 7, 8, 10, 21, 23] and/or frequently
redistributing IDs [4, 7, 10]. However, these mechanism-
s suffer from some of the following drawbacks: (1) Many
of them require a certification authority [3, 7, 10, 21, 23].
The feasibility of a centralized trusted authority relies on t-
wo assumptions: all participating nodes trust on its security
and incorruptibility, and the authority is able to accurate-
ly detect the attackers. These assumptions are difficult to
be realized on large-scale non-commercial DHTs; (2) Fre-
quently redistributing IDs would induce churn (participat-
ing nodes dynamically joining and leaving the underlying
P2P network), which could affect the availability of the D-
HT protocol, and incur extra communication cost; (3) For
methods neither require a certification authority nor redis-
tribute IDs frequently, they might be vulnerable against a
resourceful attacker [5, 8].

In this work, we present a novel method to make eclipse
attacks in large-scale DHTs computationally infeasible by
circumscribing ID generation. Observing that a benign us-
er can perform her searching and publishing requests at an
arbitrary ID, whereas an attacker has to get a number of
(typically 8) IDs closer to the target than any other benign
nodes, so as to initiate an attack, we design a procedure for
generating an ID and verifying an ID for its validity. In our
scheme, a valid node ID is generated by solving a computa-
tional puzzle constructed by the user’s network parameters
together with time-related public information, which can-
not be pre-computed or manipulated. Furthermore, an ID
has only two weeks of period of validity, and its validity
can be easily verified by a few hash operations. For the pro-
posed scheme, generating a valid ID normally takes several
seconds of CPU time at most, depending on the difficulty
of the puzzle. Such time length is acceptable for a legiti-
mate user. However, in order to initiate an eclipse attack,
an attacker must utilize sufficient IP resources (hundreds of
different IP addresses) for computing numerous IDs, so as
to get desired ones. In BTDHT (the DHT network of Bit-
Torrent [9]) our simulations indicate that even if the attacker
can generate 109 IDs (45 times of current BTDHT size) in a
week (it takes 4000 processors), he only has a 75% chance
of getting enough desired IDs. In this paper we might use
settings and parameters of BTDHT to illustrate our ideas,
but our method can be applied to all DHTs.

We enumerate major advantages of our defense scheme
as follows:

• It requires no centralized servers, yet still significantly

increases the overall cost of a successful attack.

• It can be easily implemented in current client program-
s, and unlike most existing defense schemes, the in-
duced communication cost and churn are negligible.

• Periodically renewing IDs using some public informa-
tion makes pre-computation of valid IDs impossible,
therefore an attacker has to generate desired IDs with-
in a period of validity.

• Using network parameters to generate computation-
al puzzles makes ID reusing impossible, and a valid
ID can be immediately authenticated without any
challenge-response message or time synchronization.

The rest of the paper is structured as follows. In Section
II we provide some background on DHTs and eclipse at-
tacks and discuss existing defenses. Section III describes
our proposed defense. In Section IV, we validate our
method and analyze its disadvantages using real-world data
from BitTorrent and compare our method with current de-
fenses. Section V simulates the cost for a benign user and
an attacker. Section VI concludes the paper.

2 Background

2.1 Overview of DHTs

The core idea of DHTs is a decentralized lookup service
denoted as lookup(k), which normally returns the network
addresses of the nodes who keep a record of nodes stor-
ing files associate with key k. Many popular applications
of DHTs focus on file-sharing: A user (called publisher)
who possesses certain values v of a file identified by key
k (typically IP addresses of nodes storing the file) executes
lookup(k) and then stores (k, v) on the returned nodes. Af-
terwards, those who search for the file (searchers) can re-
trieve (k, v) pairs by executing lookup(k) and then sending
requests to the nodes in v. Such DHT architecture has an el-
egant feature: Although each node is just required to know
the identities of only a small subset of the entire network,
the lookup operation can still be executed with good enough
accuracy and within acceptable time duration.

The principle structure of a DHT is a shared identifier
space for both nodes and keys, with data associated with a
key k stored in several nodes closest to k according to some
distance function. Take Kademlia, the most popular DHT
protocol, as an example: an ID is a 160-bit vector generated
using the SHA-1 hash function on a random value, and the
distance between two nodes is determined by XOR opera-
tion on their identifiers [16].

To locate the nodes corresponding to k, a node forwards
the lookup request to another peer whose identifier is clos-
er to k than itself, or just replies the information on ”closer



peers” to the requester. A lookup request is finished when
no node is found with an identifier closer to the key k, or the
time limit has been exceeded. The lookup time is logarith-
mic of the size of entire ID space. Every node maintains a
routing table—links to a set of nodes. The size of a routing
table must be small relative to the total number of partici-
pating nodes, for the sake of scalability, and it is typically of
O(m), where m is the length of an identifier. Take Kadem-
lia as an example. Each node in it keeps a k-bucket of links
(typically 10) for nodes within a distance between 2i and
2i+1, 0 ≤ i < m, from itself. Links in a bucket are select-
ed from active nodes with preference to nodes with longer
history.

2.2 Overview of Eclipse Attacks

The first piece of work on such attacks in the context
of DHTs appeared in [20]. It is a form of routing poison-
ing, which aims to separate a set of victim nodes from the
rest of the overlay network. A modest number of malicious
nodes conspire to fool correct nodes into adopting the ma-
licious nodes as their neighbors. In short, the eclipse attack
is performed by an attacker that tries to intercept all the re-
quests directed to a specific resource [15]. It is performed
by initializing a limited set of nodes with identifiers numer-
ically closer to the target ID, abbreviated as IDe, than any
real node, and then announcing these sybils to the regular
peers, in order to ”poison” their routing tables and to attrac-
t all lookup requests for IDe. In practice, once receiving
a lookup request to IDe, the attacker might answer with a
fake content or simply ignore it. In the extreme, an eclipse
attack allows the attacker to control all overlay traffic, en-
abling arbitrary denial of service or censorship attacks.

There are two necessary conditions to perform an eclipse
attack: (1) The attacker nodes can choose a set of desired
IDs for themselves so that the attacker can control the ones
closest to the target. In order to completely isolate a target
ID, the node density around IDe ought to be much high-
er than a randomly distributed fraction. (2) The attacker
nodes must be added to others’ routing tables. Unfortunate-
ly, current DHT implementations contain no authentication
protocols. In Kademlia a node will insert new nodes in its
buckets when old ones leave the system or the bucket is not
full, nevertheless, the buckets close to the node’s own ID
are almost never full.

2.3 Related Work

2.3.1 Circumscribing ID selection

In this part we briefly overview some existing defenses with
focus on ID redistribution or circumscribing ID generation.
Since they target on the two necessary conditions of the e-
clipse attack, we believe they are more effective than the

approaches of detecting or avoiding malicious neighbors via
node behavior or network measurement.

Castro et al. imposed strong structural constraints on the
neighbor sets and used redundant routing to guarantee the
routing performance [7]. However this method relies on
a trusted authority to distribute signed IDs. Condie et al.
extended their work and suggested inducing churn period-
ically so as to randomly redistribute node IDs in the net-
work [10]. While their calculation on communication over-
head only includes updating routing tables, the (key, value)
data transmission cost in a regular churn scheme is not neg-
ligible. Furthermore, their solution still needs a certification
authority.

Awerbuch and Scheideler [4] brought forward a secure
DHT scheme that implemented routing process based on
the concept of region. The ID of a new node is generated by
a group of participating nodes using a verifiable secret shar-
ing scheme. They introduced a new rule called cukoo rule
that all nodes in the region of the new identifier of the join-
ing node must leave the system and rejoin with new random
identifiers. This rule makes the attacker difficult to locate
near the victim node. However, the paper didn’t carry out
any experiment, so the practical effect of their method has
yet to be seen.

In [8] and [5] it was suggested that IDs could be chosen
as a hash result of network parameters, however, [15] indi-
cated that such restriction is weak to a resourceful attacker:
If an attacker can obtain enough IP resources, he can get the
desired IDs with an adequate number of attempts. Nowa-
days a million-node rainbow table of network parameters
and IDs can be built within a few minutes.

Aiello et al. [3] adopted a centralized certification service
to generate legitimate IDs which cannot be predicted, they
also introduced a handshake process to prevent man-in-the-
middle attack. Centralized service (also suggested in [23]
and [21]) is considered applicable at the first years of P2P,
where the network scales are relatively small. However in
larget-scale DHTs, it suffers from single-point failure, and
even if the service is secure, as long as an attacker contin-
uously request for more IDs, he can get the desired ones
eventually (although it might take a longer time).

2.3.2 Computational Puzzles as Sybil Defenses

Ideally, an ID should be computed in a user’s own computer,
so that we do not have to worry about single-point failure of
a certification server or collusion attacks, and no commu-
nication cost or churn should be induced for preventing a
likely-to-happen attack. The defenses in [5, 8] fit in these
requirements, except that they are vulnerable to resourceful
attackers. In order to raise the cost of an attacker, the idea
of computational puzzle is considered. In this part we dis-
cuss some usages of computational puzzles in the content



of defending sybil attacks.
A pioneer work of using computational puzzles in D-

HTs is [7]. The paper brought forward the key challenges
of this approach: the cost of solving a crypto puzzle must
be acceptable to the slowest legitimate node, yet the puz-
zle must be hard enough so as to sufficiently slow down an
attacker with access to many fast machines. It also pro-
posed two simple examples of using computational puz-
zles. However, the first example does not mention how to
avoid other nodes reusing a node’s work without challenge-
response messages or time synchronization in the authenti-
cation procedure, whereas in the second example, the addi-
tional cost for performing an attack is very little. We believe
our method perfectly solves the above challenges by incor-
porating the scale of the network into the cost of an attacker,
and in the same time the increased cost of a normal user is
very little, which can be seen from later analysis (Section
IV).

Halderman and Waters [13] recommend that puzzles be
derived from multiple online sources rather than from an
individual source. However a valid ID in their scheme can
be easily reused by an attacker. As a result, malicious nodes
could just stay online listening to valid IDs and then use
them.

The idea of computational puzzles is also considered
by [18] and [6] in their defenses against sybil attacks, but a
node can still choose its own ID in their schemes, therefore
their method have no effect in defending eclipse attacks, be-
cause the attacks can be performed with a medium number
of malicious nodes. More importantly, they do not solve the
challenge: determination of the appropriate puzzle’s diffi-
culty in a heterogeneous environment is difficult, and con-
tinuously solving puzzles is a burden to normal users.

3 Puzzle-based ID Generation

In our opinion, an applicable ID generation procedure
should meet the following requirements:

• An ID can be computed with a user’s own computer
within acceptable CPU time.

• An ID can be immediately verified, and no challenge-
response messages or time synchronization is required.

• An ID cannot be used by another node.

• The result of ID computing cannot be predicted, so the
only way for an attacker to get his desired IDs is to
generate numerous IDs.

• A period of validity is carefully chosen so that ID re-
newal would not induce significant churn, and in the
same time it is difficult for an attacker to compute de-
sired IDs within this period.

In this section we apply the idea of message specific puz-
zle [17] and present an original method of generating IDs
which satisfies all these requirements.

3.1 Basic Construction

Now let us describe the details of puzzle-based ID gen-
eration. In order to generate a valid ID, a user u enumerates
all possible values of Pu until she has found one solution of
the following puzzle:

H(IPu|portu|T |Pu) = 00 . . . 0︸ ︷︷ ︸
l bits

xx . . . x (1)

where H is a cryptographic hash function, e.g. SHA-1. For
simplicity we use SHA-1 as H in the rest of our paper. IPu

and portu are network parameters of current DHT node, T
is a piece of public information which renews periodically
(every tcycle) with the length of l1 bits, Pu has a fixed length
of l2 bits, and each x is an arbitrary value of 0 or 1.

Given IPu, portu and T , it would take certain CPU time
to find a valid Pu so that the first l bits of the hash value are
all zeros. There is a possibility that the user enumerates all
possible l-bit strings and still does not find a valid Pu, the
possibility is very small though as long as l2 ≥ l+4 (about
10−7), and even if the user fails to do so, she could simply
change the portu.

The time-related public information T should have sev-
eral characters as follows: (1) It can be automatically re-
trieved from many different sources, but the value is unan-
imous; (2) It changes periodically; (3) It cannot be manip-
ulated; (4) It cannot be predicted. Character (4) does not
affect the computing cost, but it can stop the attacker from
computing valid IDs ahead of time. Such public informa-
tion abounds in our world, for example, “Dow Jones In-
dustrial Average at the end of last Friday and last Friday’s
date”. The values can be stored as two 32-bit integers (ig-
noring the decimal point of DJI). They can be easily fetched
from dozens of web sites, and are always unanimous. Pre-
dicting or manipulating such values is impossible.

Now the user can compute her ID:

IDu = H(IPu|portu|T |Pu) (2)

in which
Pu = Pu ⊕ 11 . . . 1︸ ︷︷ ︸

l2bits

Verification of an ID is very easy. Let Tcur and Tlast rep-
resent T values in current and the last period. Each ID has
a validity of two periods. An ID is always transferred with
its associated Pu. Whenever a node is considering adding
another node (who is not behind a NAT) with certain IDu

into its routing table, it computes H(IPu|portu|Tcur|Pu)



and H(IPu|portu|Tlast|Pu), and checks if one of them sat-
isfies the pattern. If so, it computes H(IPu|portu|T |Pu)
with corresponding T and checks if IDu is legal.

When a new period is coming, a user u should randomly
decide a time tu in current period to renew its ID. It could
continue to use the old one, and fetches new T and com-
putes new ID after tu. As long as tcycle is chosen carefully,
e.g. a week, and tu distributed uniformly, the induced churn
is negligible.

IP changing would also lead to ID renewal. Since a nor-
mal network access session lasts for hours, the workload of
computing a new ID at the beginning of a new session is
also acceptable. It is obvious that our method meets all five
requirements we proposed at the beginning of this section.

3.2 Handling NATs

Steiner et al. [22] point out that a large amount of peers
located behind NATs cannot be directly contacted in Kad.
A NAT would block the lookup queries, and peers behind
NATs do not participate in storing published information,
and therefore make no contribution to the DHT protocol.

Peers behind a NAT have no information about their pub-
lic IPs on the Internet, thus their ID generation always leads
to an invalid value in our scheme. Luckily, since their IDs
are invalid, they will never get a chance to enter a node’s
routing table, and thus make no contribution to an eclipse
attack as well.

Consequently, if a node can detect that it is behind a
NAT, it can skip the generating procedure and use a random
number as its ID.

4 Analysis

4.1 Choice of Parameters

As stated, a week’s period is long enough to maintain the
stability of the network, and 64 bits (namely l1 = 64) of T
should induce adequate inscrutability. A Pu of l+3 bits will
definitely suffice, which becomes obvious in the following
analysis. The most important parameter in our method is the
length of the pre-determined pattern, i.e. l. Given a puzzle
length l, the possibility of finding the first puzzle solution
on the x-th trial is Px,l = 2−l × (1 − 2−l)x−1. Therefore,
the expected number of trials of finding a puzzle solution
Pu is

E(x) = Σ∞
x=1Px,l · x = 2l

Thus on average it takes 2l trials to find a solution, and one
trial requires a SHA-1 computation on 55 bytes at most (the
total length of IPu, portu, T , Pu, which is exactly one data
block after padding). Our goal is to limit the computation
for a normal user in reasonable time. According to the well-
known Crypto++ 5.6.0 benchmark [11], an AMD Opteron

8354 2.2 GHz processor on Linux platform can perform
3.49×106 trials per second, and an Intel Pentium 4 (Prescot-
t) CPU (2.9GHz) can perform 2.51× 106 trials per second.
When l = 23, it takes 2.40 seconds on average to find a so-
lution with an AMD Opteron 8354 2.2 GHz processor, and
3.34 seconds on an Intel Pentium 4 (Prescott) CPU. The l
value can be easily adjusted as the computers become faster.
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Figure 1. Probability of finding a puzzle solu-
tion within x · 2l trials

Now let us consider the worst case. Figure 1 (cited
from [17]) shows the possibility of finding a puzzle solution
within x · 2l trials, e.g.P in

x,l = 1− (1− 2−l)x·2
l

. We can see
that there is a 95% possibility of finding a solution within 3
times of average duration, and in 6×2l trials the possibility
is almost 100%. Note that these lines almost overlap with
each other, which means the choosing of l has almost no
effect on these possibilities:

P in
x,l = 1−(1−2−l)x·2

l

= 1−(1−2−l)−2l·(−x) ≈ 1−e−x

Hence l2 = l + 4 (which means 16 × 2l trials at most for
a single portu) is a reasonable choice. The possibility of
failure is e−16 ≈ 1.1× 10−7.

4.2 ID Generation From an Attacker’s
Point of View

Because it is impossible for a malicious node to claim to
be its desired ID, an attacker would have to generate enor-
mous IDs to get enough ones closer to the target than any
other node in the network. The desired ID space of the at-
tacker is N−1 × 1

2 on average, where N is the total amount
of nodes (who are not behind NATs) in the DHT. Figure 2
illustrate the estimation. In the interest of being closer to
the target ID (IDe) than the nearest benign nodes n1 and
n2, the desired ID space has a span of

min{|IDe − n1|, |n2 − IDe|} × 2



which is 1
2 |n2 −n1| on average. The expectation of 1

2 |n2 −
n1| is 1

2N of the entire ID space. Given a desired ID space of
1

2N , the possibility of finding a desired ID on the x-th trial is
Px,N = 1

2N · (1− 1
2N )x−1. As a consequence, the attacker

has to generate 2N IDs to find a useful one on average, the
analysis is similar to the discussion on choosing l. This
assumption is very loose, for the real-world ID distribution
is random rather than uniform.

Figure 2. Estimation of the desired ID space
for an attacker

His overall computing effort in an attack can be estimat-
ed as:

Cattacker = t×m× 2N

in which Cattacker represents the computing effort of the
attacker (in seconds of CPU time), t is the average time of
generating a valid ID, and m is the malicious nodes he need
to isolate a target ID. To complete the computation with-
in tcycle (so that he can continuously perform the attack),
he needs Cattacker/tcycle processors working continuously
without interruption.

We now apply our estimation using real-world data from
BTDHT. There are about 22 million online nodes in BTD-
HT at most simultaneously [25]. Estimating m is difficult,
because different client programs have different implemen-
tations. In BTDHT, a lookup request can ask for 8 nodes, so
it is impossible to perform the attack with less than 8 valid
IDs. Therefore we use 8 to estimate the minimal nodes to
perform the attack.

To execute an eclipse attack in BTDHT, assuming that
the attacker uses AMD Opteron 8354 2.2 GHz processors
which can compute an ID in 2.40 seconds, the total CPU
time he needs is 2.40×(22×106×2)×8 = 8.45×108 sec-
onds (about 104 days). To complete the computation within
a week (so that he can continuously perform the attack), he
needs 1397 processors running day and night.

We can use Amazon EC2 pricing standard [2] to give out
a simple estimation on the expense of ID generation. The
most economic choice of an attacker is to use 84 Cluster G-
PU Instances [1], and the cost is $4234 per day (on-demand
instances) or $4.73× 105 per year (one-year-term reserved
instances).

Moreover, because each IP can only provide 6.5 × 104

available ports and 16 valid Pu per port on average, the at-
tacker needs 339 IPs to perform the attack at any IDe he
wants. If the attacker’s IP resources are not enough, it is

very likely that he cannot reach his desired ID space no mat-
ter how much he cost on computing IDs.

4.3 ID Repetition

ID repetition is a very common problem in DHTs. About
19.5% of peers in routing tables and 4.5% of active peers
(those who respond to the DHT protocol) in Kad (the D-
HT network of eMule) do not have unique IDs [26]. ID
repetition degrades Kad’s performance on publishing and
searching. It can be considered as a special case of eclipse
attacks.

In our scheme this form of attack is almost impossible.
The difficulty of generating a specific ID is guaranteed by
the mathematical property of cryptographic hash functions.

4.4 Comparison with Previous Tech-
niques

In this part we compare our work with three existing de-
fenses discussed in 2.3.2: the second example proposed by
Castro et al. [7], the methods proposed by Halderman and
Waters [13] and that by Rowaihy [18]. For simplicity we
assume the workload of a normal user is 1, and the network
scale is 20 million. An attacker who generates 10% of the
number of existing nodes can perform a sybil attack and
paralyze the network [18], and 8 IDs is enough to perform
an eclipse attack.

[7] [13] [18] Our method
Eclipse 8 1.6× 107 8 1.6× 107

Sybil 8 2× 106 2× 106 2× 106

Replay N Y N N
Pre-compute Y N N N

Table 1. Comparison with similar methods

The result is presented in Table 1. The first data row rep-
resents the attacker’s workload in a typical eclipse attack,
and the second row represents that in a typical sybil attack.
The third row indicates whether the attacker can replay a
user’s authentication message. The last row is whether the
attacker can pre-compute the puzzle. The table shows that
our method has the best overall performance with regard to
the four aspects.

4.5 Disadvantages

The main disadvantage of this method is that the com-
puting cost of an attacker is associated with the size of the
network. Generating IDs during an eclipse attack on a 500-
node DHT can be accomplished by a single processor, thus
our method can only be applied to large DHTs. On the oth-
er hand, a centralized certification service is applicable in



small DHTs. In practice, say that a Hollywood compa-
ny wants to block the distribution of its latest movies, it
might still afford the computational cost of performing at-
tacks on all large-scale file-sharing DHTs. Nevertheless,
our method still greatly enhances the difficulty of an attack
without complicating DHT protocol, and in the same time,
the additional computing and communication cost for a nor-
mal user is negligible.

Another disadvantage is that for a user with an unstable
network connection, her IP may change every time her con-
nection is lost, and frequent ID computation would affect
the performance of her P2P application. To avoid such situ-
ation, she can simply skip the generating procedure and use
a random number as her ID, just like a node behind a NAT.
After all, a node whose IP changes frequently is not likely
to contribute much to a DHT.

5 Simulations

In this section we validate our method by simulating the
computing effort of the users and the attackers.

5.1 ID Generation Time Distribution

To measure the cost of a normal user, we generate 1000
valid IDs with our method and record the time it took for
generating each ID. The parameters in Equation (1) are cho-
sen in the following way: a random combination of IPu,
Portu and T is generated for each ID before its computa-
tion. This simulation is carried out on a Lenovo Ideapad
Y450 Laptop with an Intel Core2 Duo T6600 2.20GHz pro-
cessor and 2.00GB RAM, such computing power is avail-
able to a normal user. The operation system is Win 7 and
the program is written in C++. Figure 3 presents the cu-
mulative distribution of generation time. As we can see the
curve is very close to the theoretic prediction of Figure 1.

The average computing time is 8.68 seconds, and over
97% of IDs is computed within 30 seconds. The longest
generation time for an ID is 56.54 seconds. Since the com-
putation is required only once in a week and can be per-
formed in background, the cost is acceptable for most users.

5.2 The Attacker’s Effort

In this part we analyze the relation between an attack-
er’s computing effort and his attack capacity. For simplicity
we use a 56-bit ID space and the distance between two n-
odes is computed as the Euclidean distance between their
IDs. We randomly distribute 2.2 × 107 benign nodes (the
current BTDHT size) and 105 target IDs in the space. An
attacker has to generate 8 IDs closer to the target ID than
any benign nodes does, in order to isolate the target ID. Our
fist simulation shows that valid IDs distribute randomly in
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the space, so we use SHA-1 function on sequential numbers
to simulate an attacker’s effort. We assume that the attack-
er performs the computation within one tcycle (otherwise,
part of his effort would be invalid at the end of the com-
putation). According to our theoretic prediction in section
IV, an attacker has to generate m × 2N = 3.52 × 108 IDs
on average to perform an attack, which perfectly meets our
simulation results in Figure 4.
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Figure 4. Number of nodes generated by an
attacker vs. number of IDs he can attack

Our simulation indicates that few target IDs (less than
1%) can be eclipsed until the number of nodes generated
by the attacker reaches the number of existing nodes. And
when he has 3.52× 108 IDs he can only attack 55% of IDs.
If he computes as much as 3 times of the number, he can
attack 75% of IDs. Our simulation on different network
scales shows similar results.



6 Conclusion

An eclipse attack is very difficult to detect or prevent,
since the attacker nodes can act normally in every way ex-
cept when they are asked for certain target IDs. Defending
against the eclipse attack involves a trade-off between per-
formance and complexity. In this work we present a method
of making eclipse attacks in large-scale DHTs computation-
ally infeasible by a puzzle-based ID generating and verify-
ing procedure. The induced communication and computing
cost is negligible, other than an ID renewal procedure tak-
ing several seconds per week. To the best of our knowledge,
it is the first ID generating method, which does not involve
a centralized certification server and induce little churn.

It is a good idea to involve a human interaction in the au-
thentication procedure [15], since it would make automatic
ID generation impossible. It would be a great improvement
to our method if that can be achieved without the help of a
centralized server.
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